This is Banach's fixed-point theorem—the following is an expansion and rearrangement of Sutherland's proof of such [1].

Let $\langle x_n \rangle$ be a sequence such that $x_1 \in S$ is an arbitrary element, and $x_n = f(x_{n-1})$ for $n \in \mathbf{N}^+$ such that n > 1. We first establish that $\langle x_n \rangle$ converges to some $p \in S$.

Lemma 1. For $m, n \in \mathbb{N}^+$ such that m > n, we have

$$d(x_m, x_n) \le \sum_{j=n}^{m-1} d(x_{j+1}, x_j)$$

Proof. Fix $n \in \mathbf{N}^+$. For $\ell \in \mathbf{N}^+$, let $P(\ell)$ be the proposition

$$d(x_{n+\ell}, x_n) \le \sum_{j=n}^{n+\ell-1} d(x_{j+1}, x_j)$$

We proceed inductively.

Base Case Let $\ell = 1$. Then,

$$d(x_{n+1}, x_n) = \sum_{j=n}^{n} d(x_{j+1}, x_j)$$

Hence, we have that P(1) holds.

Inductive Step Suppose there exists $k \in \mathbb{N}^+$ such that

$$d(x_{n+k}, x_n) \le \sum_{j=n}^{n+k-1} d(x_{j+1}, x_j)$$

Then,

$$d(x_{n+k+1}, x_n) \le d(x_{n+k+1}, x_{n+k}) + d(x_{n+k}, x_n)$$

$$\le d(x_{n+k+1}, x_{n+k}) + \sum_{j=n}^{n+k-1} d(x_{j+1}, x_j)$$

$$= \sum_{j=n}^{n+k} d(x_{j+1}, x_j)$$

Hence, we have that P(k) implies P(k+1).

By the principle of mathematical induction, it's clear that $P(\ell)$ holds for all $\ell \in \mathbf{N}^+$; further, since n was arbitrary, by universal introduction¹, the inequality holds for all $n \in \mathbf{N}^+$ as well.

We arrive at the formulation in the lemma by substituting m for $n + \ell$. \square

¹See [2], [3, Section 10.2], and [4, Section 3].

Lemma 2. For $n \in \mathbb{N}^+$ such that n > 1, we have

$$d(x_{n+1}, x_n) \le \mu^{n-1} d(x_2, x_1)$$

Proof. For $n \in \mathbb{N}^+$ such that n > 1, let P(n) be the proposition

$$d(x_{n+1}, x_n) \le \mu^{n-1} d(x_2, x_1)$$

We proceed inductively.

Base Case Let n=2. Then,

$$d(x_3, x_2) = d(f(x_2), f(x_1)) \le \mu d(x_2, x_1) = \mu^{2-1} d(x_2, x_1)$$

Hence, we have that P(2) holds.

Inductive Step Suppose there exists $k \in \mathbb{N}^+$, k > 1, such that

$$d(x_{k+1}, x_k) \le \mu^{k-1} d(x_2, x_1)$$

Then,

$$d(x_{k+2}, x_{k+1}) = d(f(x_{k+1}), f(x_k))$$

$$\leq \mu d(x_{k+1}, x_k)$$

$$\leq \mu [\mu^{k-1} d(x_2, x_1)]$$

$$= \mu^k d(x_2, x_1)$$

February 2025 Problem Submission

Angel

Hence, we have that P(k) implies P(k+1).

By the principle of mathematical induction, it's clear that P(n) holds for all $n \in \mathbb{N}^+$ such that n > 1.

Let $m, n \in \mathbb{N}^+$ such that m > n. Using **Lemma 1**, **Lemma 2**, and the closed-form formula for the sum of a geometric series, see that

$$d(x_m, x_n) \le \sum_{j=n}^{m-1} d(x_{j+1}, x_j)$$

$$\le \sum_{j=n}^{m-1} \mu^{j-1} d(x_2, x_1)$$

$$= \left(\sum_{j=n}^{m-1} \mu^{n-1} \mu^{j-n}\right) d(x_2, x_1)$$

$$= \mu^{n-1} \left(\sum_{q=0}^{m-n-1} \mu^q\right) d(x_2, x_1)$$

$$= \mu^{n-1} \left(\frac{1 - \mu^{m-n}}{1 - \mu}\right) d(x_2, x_1)$$

$$< \frac{\mu^{n-1}}{1 - \mu} d(x_2, x_1)$$

Note that $0 \le \mu < 1$ means $\frac{\mu^{n-1}}{1-\mu}d(x_2,x_1)$ is a geometric sequence which converges to 0 as n approaches infinity. I.e., there exists $N \in \mathbf{N}^+$ such that for all $\epsilon \in \mathbf{R}^+$, if n > N then $\frac{\mu^{n-1}}{1-\mu}d(x_2,x_1) < \epsilon$. Take said N. Given $\epsilon \in \mathbf{R}^+$, we can choose $m, n \in \mathbf{N}^+$ such that m > n and n > N, yielding

$$d(x_m, x_n) < \frac{\mu^{n-1}}{1-\mu} d(x_2, x_1) < \epsilon$$

Hence, $\langle x_n \rangle$ is Cauchy.

Since (S, d) is complete and $\langle x_n \rangle$ is Cauchy, we have that $\langle x_n \rangle$ converges to some $p \in S$.

As a penultimate result, see that f is uniformly continuous; for if we're given $\epsilon \in \mathbf{R}^+$, we can simply set $\delta = \frac{\epsilon}{\mu}$. Take $a, b \in S$. Then,

$$d(a,b) < \delta \implies d(f(a),f(b)) \le \mu d(a,b) < \mu \left(\frac{\epsilon}{\mu}\right) = \epsilon$$

Synthesizing $\langle x_n \rangle$'s converging to some $p \in S$ with f's being uniformly continuous, we have

$$f(p) = f(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = p$$

Thus, there exists $p \in S$ such that f(p) = p.

References

- [1] Sutherland, W. A. (2009b). Introduction to metric and topological spaces. Oxford: Oxford University Press.
- [2] Shapiro, S., & Kouri Kissel, T. (2022, June 29). Classical logic. Stanford Encyclopedia of Philosophy. Stanford University. https://plato.stanford.edu/entries/logic-classical/. Accessed 4 February 2025
- [3] (N.d.). Introduction to logic. Stanford University. http://intrologic.stanford.edu/chapters/chapter_10.html. Accessed 4 February 2025
- [4] Biderman, S. (2018, August 23). Proof by induction involving two variables. Mathematics Stack Exchange. https://math.stackexch ange.com/questions/2891651/proof-by-induction-involving-t wo-variables. Accessed 4 February 2025